Arithmetic progression (arithmetic sequence)

Head from the following two examples:
Example 1: 3,5,7,9,11,...
Example 2: 55,50,45,40,...

It is not difficult to conclude that in the first example the next few following members will be $13,15,17$, because each member increases for two.

In example 2, a few next following members will be $35,30,25, \ldots$ each of them decreases by 5 .
As we see, progression may be increasing or decreasing.
Arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference of any two successive members of the sequence is a constant.

It is very important from which number arithmetic progression starts, and he is called the first (initial) term and marked with a_{1}.

For example 1 , initial term is $a_{1}=3$

For example 2, initial term is $a_{1}=55$
The common difference of successive members is d (difference).
$d=a_{2}-a_{1}=a_{3}-a_{2}=\ldots=a_{n}-a_{n-1}$
For example $1, d=2$ (increas)
For example 2, $d=-5$ (decreas)

The n - th term of the sequence is given by:

$$
a_{n}=a_{1}+(n-1) d
$$

The sum of the components of an arithmetic progression is called an arithmetic series.

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \quad \text { or } \quad S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}
$$

For each arithmetical progression still applies: (arithmetic middle)

$$
a_{n}=\frac{a_{n-1}+a_{n+1}}{2} \quad \text { or } \quad a_{n}=\frac{a_{n-j}+a_{n+j}}{2} \quad j=2, \ldots, n-1
$$

EXAMPLES:

1) The fifth member of arithmetic progression is 19 and the tenth member is 39 .Determine that arithmetic progression.

Solution:

$a_{5}=19$
$a_{10}=39$
we nwill use formula: $a_{n}=a_{1}+(n-1) d$

$$
\begin{array}{ll}
a_{n}=a_{1}+(n-1) d & \text { for } n=5 \Rightarrow a_{5}=a_{1}+4 d=19 \\
& \text { for } n=10 \Rightarrow a_{10}=a_{1}+9 d=39
\end{array}
$$

Next, we form system of equations:

$$
\begin{aligned}
& a_{1}+4 d=19 / \cdot(-1) \\
& a_{1}+9 d=39 \\
& \begin{array}{l}
-a_{1}-4 d=-19 \\
+a_{1}+9 d=39
\end{array} \\
& 5 d=20 \text { back in one of the equation } \\
& d=4 \rightarrow \\
& a_{1}+4 d=19 \\
& a_{1}+16=19 \\
& a_{1}=3
\end{aligned}
$$

So: arithmetic progression is

$$
3,7,11,15,19, \ldots
$$

The general member will be:
(in this example is not required)

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=3+(n-1) \cdot 4 \\
& a_{n}=4 n-1
\end{aligned}
$$

2. Find a_{1} and \mathbf{d} in arithmetic progression if: $\quad a_{2}+a_{5}-a_{3}=10$ and $a_{2}+a_{9}=17$

Solution:

$$
a_{n}=a_{1}+(n-1) d \rightarrow \begin{gathered}
a_{2}=a_{1}+d \\
a_{5}=a_{1}+4 d \\
a_{3}=a_{1}+2 d \\
a_{9}=a_{1}+8 d
\end{gathered}
$$

Replace this in $a_{2}+a_{5}-a_{3}=10$ and $a_{2}+a_{9}=17$

$$
\begin{aligned}
& \left(a_{1}+d\right)+\left(a_{1}+4 d\right)-\left(a_{1}+2 d\right)=10 \\
& \left(a_{1}+d\right)+\left(a_{1}+8 d\right)=17 \\
& a_{1}+d+a_{1}+4 d-a_{1}-2 d=10 \\
& a_{1}+d+a_{1}+8 d=17 \\
& \left.\hline a_{1}+3 d=10 \ldots \ldots \ldots . .\right)^{*}(-2) \\
& 2 a_{1}+9 d=17 \\
& \hline-2 a_{1}-6 d=-20 \\
& \frac{2 a_{1}+9 d=17}{3 d=-3} \\
& d=-1 \\
& a_{1}+3 d=10 \\
& a_{1}-3=10 \\
& a_{1}=13
\end{aligned}
$$

So, this arithmetic progression is decreasing:
3. Find arithmetic progression if: $5 a_{1}+10 a_{5}=0$ and $S_{4}=14$

Solution:

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{5}=a_{1}+4 d \\
& 5 a_{1}+10\left(a_{1}+4 d\right)=0 \\
& 5 a_{1}+10 a_{1}+40 d=0 \\
& 15 a_{1}+40 d=0 \\
& 3 a_{1}+8 d=0
\end{aligned}
$$

$$
\begin{aligned}
& S_{4}=14 \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& S_{4}=\frac{4}{2}\left[2 a_{1}+(4-1) d\right] \\
& 14=2\left[2 a_{1}+3 d\right] \\
& 2 a_{1}+3 d=7
\end{aligned}
$$

Now, from these two equations we make system:

$$
\begin{aligned}
& \begin{array}{l}
3 a_{1}+8 d=0 / \cdot 2 \\
2 a_{1}+3 d=7 / \cdot(-3)
\end{array} \\
& \begin{array}{l}
6 a_{1}+16 d=0 \\
-6 a_{1}-9 d=-21
\end{array} \\
& \begin{array}{l}
7 d=-21 \\
d=-3 \\
3 a_{1}+8 d=0 \Rightarrow 3 a_{1}-24=0 \\
3 a_{1}=24 \\
a_{1}=8
\end{array}
\end{aligned}
$$

Arithmetic progression is: $\quad 8,5,2,-1,-4, \ldots$
4. Determine the tenth member of arithmetical progression if:

$$
\begin{aligned}
& a_{1}=2 \\
& d=5 \\
& S_{n}=245
\end{aligned}
$$

Solution:

$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$245=\frac{n}{2}[2 \cdot 2+(n-1) \cdot 5]$
$245=\frac{n}{2}[4+5 n-5]$
$490=n[5 n-1]$
$490=5 n^{2}-n$
$5 n^{2}-n-490=0$
We have received a square equation "by n".
$a=5, b=-1, c=-490$
$n_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$n_{1,2}=\frac{1 \pm 99}{10}$
$n_{1}=10, n_{2}=-\frac{98}{10} \rightarrow$ impossible
So : $n=10$ is the only solution
$a_{n}=a_{1}+(n-1) d$
$a_{10}=2+(10-1) \cdot 5$
$a_{10}=2+45$
$a_{10}=47$
5. The sum of the first three members of arithmetical progression is 36 and the sum of the squares of first three members is 482 . Find that progression.

Solution:

To "place" the problem:
$a_{1}+a_{2}+a_{3}=36$
$a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}=482$

$$
a_{n}=a_{1}+(n-1) d
$$

we can use that: $\quad a_{2}=a_{1}+d$
$a_{3}=a_{1}+2 d$

$$
\begin{aligned}
& a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)=36 \\
& a_{1}^{2}+\left(a_{1}+d\right)^{2}+\left(a_{1}+2 d\right)^{2}=482 \\
& 3 a_{1}+3 d=36
\end{aligned}
$$

$$
a_{1}+d=12 \quad \text { From here we will express } a_{1} \text { and replace in the second equation of system. }
$$

$$
a_{1}=12-d
$$

$$
(12-d)^{2}+(12-d+d)^{2}+(12-d+2 d)^{2}=482
$$

$$
(12-d)^{2}+12^{2}+(12+d)^{2}=482
$$

$$
144-24 d+d^{2}+144+144+24 d+d^{2}=482
$$

$$
2 d^{2}+432=482
$$

$$
2 d^{2}=50
$$

$$
d^{2}=25
$$

$$
d= \pm \sqrt{25} \rightarrow d= \pm 5
$$

$$
\text { For } d=5
$$

$$
a_{1}=12-5
$$

$$
a_{1}=7
$$

$$
\text { For } d=-5
$$

$$
a_{1}=12+5
$$

$$
a_{1}=17
$$

So: there are two solutions:
$7,12,17,22,27, \ldots$ and $17,12,7,2,-3, \ldots$
6. Solve the equation: $3+7+11+\ldots+x=210$

Solution:

$$
\begin{aligned}
& 3+7+11+\ldots+x=210 \longrightarrow \begin{array}{l}
a_{1}=3 \\
a_{2}=7 \\
a_{n}=x \\
S_{n}=210
\end{array} \\
& \begin{array}{l}
a_{1}=3 \\
d=4 \\
S_{n}=210
\end{array} \\
& \hdashline x=a_{n}=? \\
& S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& 210=\frac{n}{2}[2 \cdot 3+(n-1) \cdot 4] \\
& 210=\frac{n}{2}[6+4 n-4] \\
& 210=\frac{n}{2}[4 n+2] \\
& 210=2 n^{2}+n \\
& 2 n^{2}+n-210=0
\end{aligned} \quad \begin{aligned}
n_{1,2} & =\frac{-1 \pm 41}{4} \\
n_{1} & =10 \\
n_{2} & =-\frac{42}{4}
\end{aligned}
$$

From here is: $n=10$
$x=a_{10}=a_{1}+9 d=3+9 \cdot 4=3+36=39$
$x=39$
7. Determine \boldsymbol{x} so that the numbers $\log 2, \log \left(2^{x}-1\right), \log \left(2^{x}+3\right)$ be successive members of arithmetical progression.

Solution:

We will use that $a_{n}=\frac{a_{n-1}+a_{n+1}}{2} \longrightarrow a_{2}=\frac{a_{1}+a_{3}}{2}$
$\log 2, \log \left(2^{x}-1\right), \log \left(2^{x}+3\right)$
$\log \left(2^{x}-1\right)=\frac{\log 2+\log \left(2^{x}+3\right)}{2}$
$2 \log \left(2^{x}-1\right)=\log 2 \cdot\left(2^{x}+3\right)$
$\log \left(2^{x}-1\right)^{2}=\log 2 \cdot\left(2^{x}+3\right)$
$\left(2^{x}-1\right)^{2}=2 \cdot\left(2^{x}+3\right) \ldots$. replacement $\ldots 2^{x}=t$
$(t-1)^{2}=2(t+3)$
$t^{2}-2 t+1=2 t+6$
$t^{2}-4 t-5=0$
$t_{1,2}=\frac{4 \pm 6}{2}$
$t_{1}=5$
$t_{2}=-1$
Back in the replacement:
$2^{x}=5$
or
$2^{x}=-1 \longrightarrow$ impossible
$x=\log _{2} 5$
solution

